Definitions You Need To Know

Action Level - the concentration of a contaminant that, if exceeded, triggers treatment or other requirements a water system must follow. **Coliform Absent (ca)** - Laboratory analysis indicates that the contaminant is not present.

Disinfection byproducts (DBPs) – are formed when disinfectants used in water treatment plants react with bromide and/or natural organic matter (i.e., decaying vegetation) present in the source water. Different disinfectants produce different types or amounts of disinfection byproducts. Disinfection byproducts for which regulations have been established include trihalomethanes (TTHM), haloacetic acids (HAA5), bromate, and chlorite.

Initial Distribution System Evaluation (IDSE) - a one-time study conducted by water systems to identify distribution system locations with high concentrations of trihalomethanes (THMs) and haloacetic acids (HAAs). Water systems will use results from the IDSE, in conjunction with their Stage 1 DBPR compliance monitoring data, to select compliance monitoring locations for the Stage 2 DBPR.

Locational Running Annual Average (LRAA) - yearly average of all the DPB results at each specific sampling site in the distribution system. The highest distribution site LRAA is reported in the Table of Detected Contaminants.

Maximum Contaminant Level (MCL) – The "Maximum Allowed" is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal (MCLG) – The "Goal" is the level of contaminant in drinking water below which there is no known or excepted risk of health. MCLGs allow for margin of safety.

Maximum Residual Disinfection Level (MRDL) - the highest level of a disinfectant allowed in drinking water.

Millirems per year (mrem/yr) – Million fibers per liter is a measure of presence of asbestos fibers that are longer than 10 micrometers. *Nephelometric Turbidity Unit (NTU)* – Nephelometric turbidity unit is a measure of the clarity of the water. Turbidity in excess of 5 NTU is just noticeable to the average person.

Non-Detects (ND) – Laboratory analysis indicates that the constituent is not present above detection limits of lab equipment.

Not Reported (NR) - laboratory analysis, usually Secondary Contaminants, not reported by water system. EPA recommends secondary standards to water systems but does not require systems to comply.

Parts per billion (ppb) or Micrograms per liter – One part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.

Parts per million (ppm) or Milligrams per liter (mg/l) – One part per million corresponds to one minute in two years or a single penny in \$10,000.

Parts per quadrillion (ppq) or Picograms per liter – One part per quadrillion corresponds to one minute in 2,000,000,000 years, or a single penny in \$10,000,000,000.

Parts per trillion (ppt) or Nanograms per liter – One part per trillion corresponds to one minute in 2,000,000 years, or a single penny in \$10,000,000,000.

Picocuries per liter (pCi/l) – Picocuries per liter is a measure of the radioactivity in water.

RAA - Running annual average

Standard Units (S.U.) - pH of water measures the water's balances of acids and bases and is affected by temperature and carbon dioxide gas. Water with less than 6.5 could be acidic, soft, and corrosive. A pH greater than 8.5 could indicate that the water is hard.

Treatment Technique (TT) – A required process intended to reduce the level of a contaminant in drinking water.

Variances & Exemptions (V&E) – State or EPA permission not to meet an MCL or a treatment technique under certain conditions.

OUR DAILY WATER

Oxford Water Works & Sewer Board

2025 Annual Water Quality Report

(Testing Performed January - December 2024)

OUR DAILY WATER If you have any questions about this report or concerning your water, please contact our office. We want our valued customers to be informed about their water utility.

BANK DRAFT IS AVAILABLE FROM OXFORD WATER

Saves you: Time - Postage - Checks. Contact our office for more information.

		TABI	LE OF DETECT	TED DR	INKIN	TABLE OF DETECTED DRINKING WATER CONTAMINANTS
Contaminants	Violation (Yes/No)	Level Detected	Unit of Measurement	MCLG	MCL	Likely Source of Contamination
Chlorine	No	09'1 - 10'1	udd	MRDLG=4	MRDL=4	Water additive used to control microbes
Total Organic Carbon	No	0.68 - 1.20	mqq	N/A	TT	Soil runoff
Turbidity	No	Highest 0.057	NTU	N/A	ΤΤ	Soil runoff
Barium	No	0.016	mqq	2	2	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits
Copper (customer tap)	No	0.094* Range 0.015 - 0.14	udd	1:3	£1 = 1.3	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives
1,1-Dichloroethylene	No	Avg. 0.22 Range ND - 0.87	qda	L	L	Discharge from industrial chemical factories
Nitrate (as Nitrogen)	No	1'I - QN	udd	OI	OI	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits
Tetrachloroethylene	No	Avg. o.18 Range ND - o.71	Ppb	0	5	Leaching from PVC pipes; discharge from factories and dry cleaners
Trichloroethylene	YES**	Avg 5.18 Range ND - 12.0	qdd	0	5	Discharge from metal degreasing sites and other industries
TTHM (Total Trihalomethanes	No	LRAA 14.8 Range 2.0 - 17.0	qdd	0	80	By-product of drinking water chlorination
HAA5 (Haloacetic Acids)	No	LRAA 7.25 Range ND - 11.0	qdd	0	09	By-product of drinking water chlorination
				Unregula	ated Con	Unregulated Contaminants
Chloroform	No	ND - 6.60	qdd	N/A	V/N	Naturally occurring in the environment or from runoff
Bromodichloromethane	No	ND - 2.80	qdd	N/A	V/N	Naturally occurring in the environment or from runoff
				Second	ary Cont	Secondary Contaminants
Chloride	No	6.0	udd	N/A	250	Naturally occurring or from discharge or runoff
Hardness	No	130	mqq	N/A	N/A	Naturally occurring or from water additives
ЬН	No	8.4	S.U.	N/A	N/A	Naturally occurring or from water additives
Sodium	No	3.4	mqq	N/A	N/A	Naturally occurring in the environment
Total Dissolved Solids	No	611	udd	N/A	200	Naturally occurring or from discharge or runoff

* Figure shown is 90th percentile and # of sites above action level (1.3 ppm) ** Public Notice performed on 7/8/24 and 7/11/24

0

Ш

2025 Annual Water Quality Report

Testing Performed January through December 2024 Oxford Water Works & Sewer Board

Oxford Water Works & Sewer Board is pleased to present to you this year's 2025 Annual Water Quality Report. This report is designed to inform you about the quality water and service we deliver to you on a daily basis, and our constant goal being to provide you with a safe and dependable supply of drinking water.

THE OXFORD WATER & SEWER SYSTEM INCLUDES:

Water Mains in Service
Sewer Mains in Service139 miles
Water Storage Tanks5
Water Treatment Plant1
Water Storage Capacity5.4 Million Gallons
Water Production Capacity12.0 Million Gallons Per Day
Booster Pumping Stations8
Public Fire Hydrants994
Sewer Treatment Capacity4.5 Million Gallons Per Day
Sewer Pumping Stations
Metered Connections10,057

Oxford's Water Supply is classified as Groundwater. Groundwater classification means the water is pumped from below the surface of the ground. Drinking water is supplied to customers of Oxford Water by five production wells that draw water from The Knox Group, Shady Dolomite Aquifer. Each well is approximately 300 feet deep and the water from each well meets all regulations without any treatment required; however, some chlorine is added to protect the water in tanks and distribution lines. The Oxford Quarry also provides water to the Oxford system and is filtered using membranes at the Leon Smith Water Treatment Plant. The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and radioactive material, and it can pick up substances resulting from the presence of animals or from human activities.

The Oxford Water Works routinely monitors for constituents in your drinking water. We had tests performed for over 90 constituents and only 18 were at detectable levels. All monitoring and testing were performed according to Federal and State Laws. This table shows the results of our monitoring for the period of January 1, 2024 to December 31, 2024 for Inorganics, Microbiological Contaminants, Nitrates, Synthetic Organic Contaminants, Volatile Organic Contaminants, Disinfection By-Products, PFAS Contaminants, and Cryptosporidium. All of these were performed in accordance with the regulatory monitoring schedule shown here.

Monitoring Schedule Per Constituent	Date
Inorganic Contaminants	2024
Lead/Copper	2022
MicrobiologicalContaminants	Monthly
Nitrates	2024
Radioactive Contaminants	2021
Synthetic Organic Contaminants (including pesticides & herbicides)	2024
Volatile Organic Contaminants	2024
Disinfection By-Products	2024
Unregulated Contaminants Monitoring Rule 4 (UCMR4) Contaminants	2020
PFAS Contaminants	2024
Cryptosporidium	2024

As you can see by the table, our system had ONE drinking water quality violation. We have learned through our monitoring and testing that some constituents have been detected. The EPA has determined that your water IS SAFE at these levels. MCL's are set at very stringent levels. To understand the possible health effects described for many regulated constituents, a person would have to drink 2 liters of water every day at the MCL level for a lifetime to have a one-in-a-million chance of having the described health effect. The Oxford Water Works & Sewer Board is required to monitor your drinking water for specific contaminants on a regular basis. Results of regular monitoring are an indicator of whether your drinking water meets health standards. Oxford recently violated a drinking water standard. In May 2024, Oxford exceeded the standard or maximum contaminant level for Trichloroethylene (0.005 mg/l) with a value of 0.012 mg/l at the Barbour Well Treatment Plant. Oxford has stripping towers on the Barbour Well to remove volatile compounds. Following this exceedance, Oxford took the well out of service to clean the stripping tower and all associated equipment. This is not an immediate risk. If it had been you would have been notified immediately. Some people who drink water containing Trichloroethylene in excess of the MCL over many years have an increased risk of getting cancer. However, if you have specific health concerns, consult your doctor. Please share this information with all the other people who drink this water, especially those who may not have received this notice directly (e.g., people in apartments, nursing homes, schools, and businesses). You can do this by posting this notice in a public place or distributing copies by hand or mail. Should you have any questions concerning this non-compliance or monitoring requirements, please contact Oxford by phone at (256) 831-5618 or by mail at PO Box 3663, Oxford, AL 36203.

Thank you for allowing us to continue providing your family with clean quality water this year. In order to maintain a safe and dependable water supply we sometimes need to make improvements that will benefit all of our customers. These improvements are sometimes reflected as rate structure adjustments. Thank you for your understanding. Please call our office if you have any questions.

The Safe Drinking Water Act (SDWA) was signed into law on December 16, 1974. The purpose of the law is to assure that the nation's water supply systems serving the public meet the minimum national standards for the protection of public health. The SDWA covers all public water systems with piped water for human consumption with at least 15 service connections or a system that regularly serves at least 25 individuals. The SDWA directed the U.S. Environmental Protection Agency (EPA) to establish national drinking water standards. These standards limit the amount of certain contaminants provided by public water. Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water. All drinking water, including bottled water, may be reasonably expected to contain at least small amounts of some constituents. It's important to remember that the presence of these constituents does not necessarily pose a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline at 800-426-4791.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infection. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

The most recent testing for lead and copper compliance within the distribution system was in 2022. This testing was done in accordance with applicable regulations. No lead or copper samples exceeded the action level. If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The Oxford Water Works and Sewer Board is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several 30 seconds to 2 minutes before using water for drinking or cookhours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods and other steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http:www/epa.gov/safewater/lead.

PFAS are a group of manmade chemicals that have been in use since the 1940s. Because of their widespread use, most people have been exposed to PFAS and there is evidence that exposure to PFAS may lead to adverse health effects. Below is a list and results of PFAS contaminants Oxford monitored during 2024. For more information, visit *www.epa.gov/pfas*.

Contaminant		Level Detected	Contaminant		Level Detected
11CI-PF3OUdS (11-chloroeicosafluoro-3- oxaundecane-1-sulfonic acid)	ppb	ND	Perfluoroheptanoic acid	ppb	ND
9CI-PF3ONS (9-chlorohexadecafluoro-3- oxanone-1-sulfonic acid)	ppb	ND	Perfluorohexanesulfonic acid	ppb	ND-0.0029
ADONA (4,8-dioxa-3H-perfluorononanoic acid)	ppb	ND	Perfluorononanoic acid	ppb	ND
HFPO-DA (Hexafluoropropylene oxide dimer acid)	ppb	ND	Perfluorooctanesulfonic acid	ppb	ND-0.0066
NEtFOSAA (N- ethylperfluorooctanesulfonamidoacetic acid)	ppb	ND	Perfluorooctanoic acid	ppb	ND-0.0034
NMeFOSAA (N- methylperfluorooctanesulfonamidoacetic acid)	ppb	ND	Perfluorotetradecanoic acid	ppb	ND
Perfluorobutanesulfonic acid	ppb	ND-0.0044	Perfluorotridecanoic acid	ppb	ND
Perfluorodecanoic acid	ppb	ND	Perfluoroundecanoic acid	ppb	ND
Perfluorohexanoic acid	ppb	ND-0.0018	Total PFAS	ppb	0.0033-0.012
Perfluorododecanoic acid	ppb	ND			

Cryptosporidium and Giardia (in Cysts/10L)						
Raw Sour	ce Water					
Crytosporidium	ND					
Giardia	ND - 3					

Oxford Water Works & Sewer Board is a member of American Water Works Association (AWWA), Alabama Rural Water Association (ARWA), the National Rural Water Association (NRWA), Alabama's Water Environment Association (AWEA), and the Groundwater Foundation.

Unregulated Contaminant Rule 4 (UCM R4) Contaminants									
Contaminant	Unit Msmt	Level Detected	Contaminant	Unit Msmt	Level Detected				
Germanium	ppb	ND	1-butanol	ppb	ND				
Manganese	ppb	ND-48.8	2-methoxyethanol	ppb	ND				
Alpha-hexachlorocyclohexane	ppb	ND	2-propen-1-ol	ppb	ND				
Chlorpyrifos	ppb	ND	Butylated hydroxyanisole	ppb	ND				
Dimethipin	ppb	ND	O-toluidine	ppb	ND				
Ethoprop	ppb	ND	Quinoline	ppb	ND				
Oxyfluorfen	ppb	ND	Total organic carbon (TOC)	ppb	1090-1120				
Profenofos	ppb	ND	Bromide	ppb	ND				
Tebuconazole	ppb	ND	HAA9	ppb	ND-2.10				
Total permethrin (cis- & trans-)	ppb	ND	HAA6Br	ppb	ND				
Tribufos	ppb	ND	HAA5	ppb	ND				

STANDARD LIST OF PRIMARY DRINKING WATER CONTAMINANTS

Contaminant	MCL Unit		Detections	Contaminant	MCL	Unit	Detections		
Bacteriological Contaminants				1,1-Dichloroethylene	7	ppb	ND-0.87		
Total Coliform Bacteria	<5%	present/absent	absent	cis-1,2-Dichloroethylene	70	ppb	ND		
Fecal Coliform and E. coli	0	present/absent	absent	trans-1,2-Dichloroethylene	100	ppb	ND		
Turbidity	Π	NTU	0.057	Dichloromethane	5	ppb	ND		
Cryptosporidium	Π	Calc.organisms/I	ND	1,2-Dichloropropane	5	ppb	ND		
Radiological Contaminants				Di (2-ethylhexyl)adipate	400	ppb	ND		
Beta/photon emitters	4	mrem/yr	ND	Di (2-ethylhexyl)phthalate	6	ppb	ND		
Alpha emitters	15	pCi/l	ND	Dinoseb	7	ppb	ND		
Combined radium	5	pCi/l	ND	Dioxin [2,3,7,8-TCDD]	30	ppq	ND		
Uranium	30	pCi/l	ND	Diquat	20	ppb	ND		
Inorganic Chemicals				Endothall	100	ppb	ND		
Antimony	6	ppb	ND	Endrin	2	ppb	ND		
Arsenic	10	ppb	ND	Epichlorohydrin	Π	Π	ND		
Asbestos	7	MFL	ND	Bhylbenzene	700	ppb	ND		
Barium	2	ppm	0.16	Ethylene dibromide	50	ppt	ND		
Beryllium	4	ppb	ND	Glyphosate	700	ppb	ND		
Cadmium	5	ppb	ND	Heptachlor	400	ppt	ND		
Chromium	100	ppb	ND	Heptachlor epoxide	200	ppt	ND		
Copper	AL=1.3	ppm	0.094 (0.015-0.14)	Hexachlorobenzene	1	ppb	ND		
Oyanide	200	ppb	ND	Hexachlorocyclopentadiene	50	ppb	ND		
Fluoride	4	ppm	ND	Lindane	200	ppt	ND		
Lead	AL=15	ppb	ND (ND-0.0036)	Methoxychlor	40	ppb	ND		
Mercury	2	ppb	ND	Oxamyl [Vydate]	200	ppb	ND		
Nitrate	10	ppm	ND-1.1	Polychlorinated biphenyls	0.5	ppb	ND		
Nitrite	1	ppm	ND	Pentachlorophenol	1	ppb	ND		
Selenium	0.05	ppm	ND	Picloram	500	ppb	ND		
Thallium	0.002	ppm	ND	Simazine	4	ppb	ND		
Organic Contaminants				Styrene	100	ppb	ND		
2,4-D	70	ppb	ND	Tetrachloroethylene	5	ppb	ND-0.71		
Acrylamide	Π	Π	ND	Toluene	1	ppm	ND		
Alachlor	2	ppb	ND	Toxaphene	3	ppb	ND		
Benzene	5	ppb	ND	2,4,5-TP(Silvex)	50	ppb	ND		
Benzo(a)pyrene [PAHs]	200	ppt	ND	1,2,4-Trichlorobenzene	0.07	ppm	ND		
Carbofuran	40	ppb	ND	1,1,1-Trichloroethane	200	ppb	ND		
Carbon tetrachloride	5	ppb	ND	1,1,2-Trichloroethane	5	ppb	Nd		
Chlordane	2	ppb	ND	Trichloroethylene	5	ppb	ND-12.0		
Chlorobenzene	100	ppb	ND	Vinyl Chloride	2	ppb	ND		
Dalapon	200	ppb	ND	Xylenes	10	ppm	ND		
Dibromochloropropane	200	ppt	ND	Disinfectants & D	Disinfection	Byproducts	3		
1,2-Dichlorobenzene	1000	ppb	ND	Chlorine	4	ppm	1.01-1.60		
1,4-Dichlorobenzene (para)	75	ppb	ND	Chlorite	1	ppm			
o-Dichlorobenzene	600	ppb	ND	HAA5 [Total haloacetic acids]	60	ppb	LRAA 14.8		
1,2-Dichloroethane	5	ppb	ND	TTHM [Total trihalomethanes]	80	ppb	LRAA 7.25		
		SI	CONDARY CONTAMINANTS						
Alkalinity, Total (as CaCO3)	Chloride		Iron	Foaming Agents (MBAS)	Odor Sulfate				
Aluminum	Copper		Magnesium	Sodium	Color	Zinc			
Calcium, as Ca	Corrosivity		Manganese	Specific Conductance	рH				
Carbon Dioxide	Hardness		Nickel	Total Dissolved Solids	Silver				
UNREGULATED CONTAMINANTS									
1,1 – Dichloropropene	Aldicarb		Paraquat	N-Butylbenzene	Methyl-tert-butyl ether				
1,1,1,2-Tetrachloroethane	Aldicarb Sulfone		Aldrin	Sec-Butylbenzene	Metolachlor				
1,1,2,2-Tetrachloroethane	Aldicarb	Sulfoxide	Bromoform	Tert-Butylbenzene	Metribuzin				
1,1-Dichloroethane	Bromobe		Bromomethane	O-Chlorotoluene	Naphthalene	9			
1,2,3 - Trichlorobenzene	Bromoch	hloromethane	Butachlor	P-Chlorotoluene	1-Naphthol				
1,2,3 - Trichloropropane	Bromodi	chloromethane	Carbaryl	Isopropylbenzene	Propachlor				
1,2,4 - Trimethylbenzene	Bromoad	cetic Acid	Chloroethane	P-lsopropyltoluene	Tetrachloro	ethene			
1,3 – Dichloropropane	Chlorom	ethane	Chloroform	M-Dichlorobenzene	Trichloroace	etic Acid			
1,3 - Dichloropropene		chloromethane	Dicamba	Methylene Chloride	Trichloroeth				
1,3,5 - Trimethylbenzene			Dieldrin	3-Hydroxycarbofuran	Trichlorofluoromethane				